login
A066277
Primes p(m) such that a prime number q exists so that p(m)-q = c(m), the m-th composite number.
4
2, 3, 5, 7, 17, 23, 29, 31, 41, 43, 67, 89, 97, 131, 139, 157, 281, 311, 313, 331, 353, 379, 401, 431, 449, 499, 569, 571, 607, 631, 683, 733, 743, 751, 787, 829, 881, 883, 947, 967, 983, 1033, 1091, 1117, 1123, 1151, 1301, 1303, 1327, 1373, 1543, 1559
OFFSET
1,1
COMMENTS
Number of terms < 10^k: 4, 13, 41, 177, 1119, 6963, 48647, 359109, 2766164, ..., . - Robert G. Wilson v, Dec 11 2017
LINKS
FORMULA
a(n) = prime(A060253(n)) or A000040(A060253(n)). - Michel Marcus, Dec 11 2017
EXAMPLE
p(25) = A000040(25) = 97; 97 - 61 = A002808(25) = c(25) = 38 and 61 is prime.
MATHEMATICA
Composite[n_Integer] := FixedPoint[n + PrimePi@# +1 &, n + PrimePi@n +1]; fQ[n_] := PrimeQ[Prime@n - Composite@n]; Prime@ Select[ Range@250, fQ] (* Robert G. Wilson v, Dec 11 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 10 2001
STATUS
approved