OFFSET
0,1
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values; b(n)-b(n-1) is in {1,2} for all n >= 1.
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..1000
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, so that a(2) = 13.
Complement: (3,4,5,6,7,8,9,10,11,12,14,15,17,...) = (b(n)).
MATHEMATICA
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
a[n_] := a[0]*b[n] + a[1]*b[n - 1]
Table[{a[n], b[n + 1] = mex[Flatten[Map[{a[#], b[#]} &, Range[0, n]]], b[n - 0]]}, {n, 2, 1010}];
Table[a[n], {n, 0, 150}] (* A298295 *)
Table[b[n], {n, 0, 150}] (* A298296 *)
(* Peter J. C. Moses, Jan 16 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 09 2018
STATUS
approved