login
Number of nX4 0..1 arrays with each 1 adjacent to 1, 3 or 4 king-move neighboring 1s.
1

%I #4 Dec 20 2017 21:57:26

%S 4,41,164,1011,6747,40956,261107,1679397,10713116,68649432,440379417,

%T 2823019538,18104084020,116116881531,744713925888,4776387821384,

%U 30634871275346,196485585970097,1260221399870999,8082834505718767

%N Number of nX4 0..1 arrays with each 1 adjacent to 1, 3 or 4 king-move neighboring 1s.

%C Column 4 of A296804.

%H R. H. Hardin, <a href="/A296800/b296800.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) +14*a(n-2) +119*a(n-3) +8*a(n-4) -566*a(n-5) -3745*a(n-6) -2593*a(n-7) +5616*a(n-8) +34507*a(n-9) +12343*a(n-10) -54483*a(n-11) -111152*a(n-12) +30151*a(n-13) +177792*a(n-14) +13492*a(n-15) -93310*a(n-16) +186872*a(n-17) -209506*a(n-18) -175284*a(n-19) +168477*a(n-20) -345124*a(n-21) +900252*a(n-22) -589173*a(n-23) -316162*a(n-24) +578438*a(n-25) -399327*a(n-26) -205921*a(n-27) +257040*a(n-28) +114278*a(n-29) -87202*a(n-30) -64367*a(n-31) +15839*a(n-32) +16548*a(n-33) +1320*a(n-34) -2188*a(n-35) +131*a(n-36) +230*a(n-37) +40*a(n-38) -32*a(n-39)

%e Some solutions for n=6

%e ..0..1..1..1. .0..1..0..0. .1..0..1..0. .0..0..0..0. .1..1..0..0

%e ..1..0..1..1. .0..0..1..0. .1..0..0..1. .1..1..0..0. .0..0..0..0

%e ..0..0..0..0. .0..1..1..0. .0..0..1..1. .0..0..0..0. .0..1..0..0

%e ..0..0..1..1. .1..0..0..1. .0..1..1..0. .1..0..1..0. .1..0..0..0

%e ..0..0..0..0. .0..0..1..1. .0..0..1..0. .1..0..0..1. .0..0..1..1

%e ..0..1..1..0. .1..1..1..0. .0..1..0..1. .0..0..0..0. .0..0..1..1

%Y Cf. A296804.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 20 2017