login
A296800
Number of nX4 0..1 arrays with each 1 adjacent to 1, 3 or 4 king-move neighboring 1s.
1
4, 41, 164, 1011, 6747, 40956, 261107, 1679397, 10713116, 68649432, 440379417, 2823019538, 18104084020, 116116881531, 744713925888, 4776387821384, 30634871275346, 196485585970097, 1260221399870999, 8082834505718767
OFFSET
1,1
COMMENTS
Column 4 of A296804.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) +14*a(n-2) +119*a(n-3) +8*a(n-4) -566*a(n-5) -3745*a(n-6) -2593*a(n-7) +5616*a(n-8) +34507*a(n-9) +12343*a(n-10) -54483*a(n-11) -111152*a(n-12) +30151*a(n-13) +177792*a(n-14) +13492*a(n-15) -93310*a(n-16) +186872*a(n-17) -209506*a(n-18) -175284*a(n-19) +168477*a(n-20) -345124*a(n-21) +900252*a(n-22) -589173*a(n-23) -316162*a(n-24) +578438*a(n-25) -399327*a(n-26) -205921*a(n-27) +257040*a(n-28) +114278*a(n-29) -87202*a(n-30) -64367*a(n-31) +15839*a(n-32) +16548*a(n-33) +1320*a(n-34) -2188*a(n-35) +131*a(n-36) +230*a(n-37) +40*a(n-38) -32*a(n-39)
EXAMPLE
Some solutions for n=6
..0..1..1..1. .0..1..0..0. .1..0..1..0. .0..0..0..0. .1..1..0..0
..1..0..1..1. .0..0..1..0. .1..0..0..1. .1..1..0..0. .0..0..0..0
..0..0..0..0. .0..1..1..0. .0..0..1..1. .0..0..0..0. .0..1..0..0
..0..0..1..1. .1..0..0..1. .0..1..1..0. .1..0..1..0. .1..0..0..0
..0..0..0..0. .0..0..1..1. .0..0..1..0. .1..0..0..1. .0..0..1..1
..0..1..1..0. .1..1..1..0. .0..1..0..1. .0..0..0..0. .0..0..1..1
CROSSREFS
Cf. A296804.
Sequence in context: A074991 A294972 A213823 * A273418 A273446 A068169
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 20 2017
STATUS
approved