login
A296270
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
2
2, 4, 11, 33, 79, 160, 302, 542, 952, 1624, 2744, 4563, 7531, 12349, 20168, 32840, 53368, 86607, 140415, 227505, 368448, 596528, 965600, 1562803, 2529131, 4092717, 6622688, 10716304, 17339952, 28057310, 45398382, 73456916, 118856593, 192314877, 311172913
OFFSET
0,1
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5;
a(2) = a(0) + a(1) + b(0)*b(2) = 11;
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, ...)
MATHEMATICA
a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296270 *)
Table[b[n], {n, 0, 20}] (* complement *)
CROSSREFS
Sequence in context: A178925 A298445 A294224 * A123439 A026164 A192405
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 12 2017
STATUS
approved