login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295685
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 2, a(1) = 1, a(2) = 1, a(3) = 1.
1
2, 1, 1, 1, 4, 6, 8, 13, 23, 37, 58, 94, 154, 249, 401, 649, 1052, 1702, 2752, 4453, 7207, 11661, 18866, 30526, 49394, 79921, 129313, 209233, 338548, 547782, 886328, 1434109, 2320439, 3754549, 6074986, 9829534, 15904522, 25734057, 41638577, 67372633
OFFSET
0,1
COMMENTS
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
FORMULA
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 2, a(1) = 1, a(2) = 1, a(3) = 1.
G.f.: (-2 + x + 2 x^3)/(-1 + x + x^3 + x^4).
MATHEMATICA
LinearRecurrence[{1, 0, 1, 1}, {2, 1, 1, 1}, 100]
CROSSREFS
Sequence in context: A362827 A342413 A202019 * A330942 A141471 A331572
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 29 2017
STATUS
approved