login
A295516
Triangle read by rows, T(n, k) the coefficients of some polynomials in Pi, for n >= 0 and 0 <= k <= n.
0
1, 2, -1, -2, 5, -1, 9, 7, -11, 1, -69, 100, 20, -28, 1, -170, 1049, -776, -76, 94, -1, -1158, -4041, 11573, -5612, -462, 421, -1, -15533, 26993, 70183, -119881, 41889, 3767, -2379, 1, 51733, -560160, 350296, 1110160, -1265934, 335008, 35296, -16080, 1
OFFSET
0,2
FORMULA
Consider the polynomial p_n(x) with e.g.f. exp(-x)/(1 + i*log(-1-x)). After multiplying with (i-i*Pi)^(n+1) and then substituting i by 1 this becomes a polynomial in Pi, the coefficients of which in ascending order constitute row n of the triangle. The sum of the coefficients is n!.
EXAMPLE
The polynomials in Pi start:
1
2 - Pi
-2 + 5*Pi - Pi^2
9 + 7*Pi - 11*Pi^2 + Pi^3
-69 + 100*Pi + 20*Pi^2 - 28*Pi^3 + Pi^4
-170 + 1049*Pi - 776*Pi^2 - 76*Pi^3 + 94*Pi^4 - Pi^5
The triangle starts:
0: [ 1]
1: [ 2, -1]
2: [ -2, 5, -1]
3: [ 9, 7, -11, 1]
4: [ -69, 100, 20, -28, 1]
5: [ -170, 1049, -776, -76, 94, -1]
6: [-1158, -4041, 11573, -5612, -462, 421, -1]
MAPLE
A295516_poly := proc(n) assume(x>-1); exp(-x)/(1 + I*log(-1-x)): series(%, x, n+1):
simplify((I-I*Pi)^(n+1)*n!*coeff(%, x, n)); subs(I=1, %) end:
seq(seq(coeff(A295516_poly(n), Pi, k), k=0..n), n=0..8);
CROSSREFS
Sequence in context: A225568 A291694 A135506 * A330209 A068822 A351517
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Dec 16 2017
STATUS
approved