login
A294890
Number of divisors of n that are primitively abundant (A091191).
4
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 3
OFFSET
1,36
COMMENTS
Records occur at 1, 12, 36, 60, 180, 420, 840, 2520, 7560, 9240, 24024, 60060, ... and they are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, ... Ten occurs for the first time as a(40040) = 10.
LINKS
FORMULA
a(n) = Sum_{d|n} A294930(d).
EXAMPLE
Divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24. Only 12 is in A091191, thus a(24) = 1.
Divisors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, 36. Of these 12 and 18 are found in A091191, thus a(36) = 2.
MATHEMATICA
q[n_] := Count[Divisors[n], _?(DivisorSigma[1, #] > 2*# &)] == 1; a[n_] := DivisorSum[n, 1 &, q[#] &]; Array[a, 100] (* Amiram Eldar, Mar 14 2024 *)
PROG
(PARI)
A294937(n) = (sigma(n)>(2*n));
A294929(n) = sumdiv(n, d, (d<n)*A294937(d));
A294930(n) = (A294937(n)*(0==A294929(n)));
A294890(n) = sumdiv(n, d, A294930(d));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 14 2017
STATUS
approved