login
A294367
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + n - 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
2
1, 3, 9, 19, 37, 67, 117, 200, 335, 555, 912, 1491, 2429, 3948, 6407, 10387, 16829, 27253, 44121, 71415, 115579, 187039, 302665, 489753, 792469, 1282275, 2074799, 3357131, 5431989, 8789181, 14221233, 23010479, 37231779, 60242328, 97474179, 157716581
OFFSET
0,2
COMMENTS
The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. The initial values of each sequence in the following guide are a(0) = 1, a(2) = 3, b(0) = 2, b(1) = 4:
Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio. See A293358 for a guide to related sequences.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(1) + 1 = 12;
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, ...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + n - 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294367 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
Cf. A001622 (golden ratio), A293765.
Sequence in context: A147158 A014540 A293058 * A339495 A146694 A146050
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 29 2017
STATUS
approved