login
A293898
Sum of proper divisors of n of the form 3k+2.
6
0, 0, 0, 2, 0, 2, 0, 2, 0, 7, 0, 2, 0, 2, 5, 10, 0, 2, 0, 7, 0, 13, 0, 10, 5, 2, 0, 16, 0, 7, 0, 10, 11, 19, 5, 2, 0, 2, 0, 35, 0, 16, 0, 13, 5, 25, 0, 10, 0, 7, 17, 28, 0, 2, 16, 24, 0, 31, 0, 27, 0, 2, 0, 42, 5, 13, 0, 19, 23, 56, 0, 10, 0, 2, 5, 40, 11, 28, 0, 35, 0, 43, 0, 16, 22, 2, 29, 65, 0, 7, 0, 25, 0, 49, 5, 42, 0, 16, 11, 77, 0, 19, 0, 36, 40
OFFSET
1,4
FORMULA
a(n) = A078182(n) - ([n == 2 (mod 3)]*n).
G.f.: Sum_{k>=1} (3*k-1) * x^(6*k-2) / (1 - x^(3*k-1)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/36 - 1/6 = 0.107489... . - Amiram Eldar, Nov 27 2023
MATHEMATICA
Table[DivisorSum[n, # &, And[Mod[#, 3] == 2, # != n] &], {n, 105}] (* Michael De Vlieger, Nov 08 2017 *)
PROG
(PARI) A293898(n) = sumdiv(n, d, (d<n)*(2==(d%3))*d);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Nov 06 2017
STATUS
approved