login
A293810
The truncated kernel function of n: the product of distinct primes dividing n, but excluding the largest prime divisor of n.
1
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 1, 3, 2, 5, 2, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 5, 2, 3, 2, 1, 6, 1, 2, 3, 1, 5, 6, 1, 2, 3, 10, 1, 2, 1, 2, 3, 2, 7, 6, 1, 2, 1, 2, 1, 6, 5, 2, 3, 2, 1, 6, 7, 2, 3, 2, 5, 2, 1, 2, 3, 2, 1, 6, 1, 2, 15
OFFSET
1,6
COMMENTS
Contains the product of the distinct primes dividing n (like the kernel function A007947) but excluding the largest prime dividing n (which is A006530(n)).
LINKS
J.-M. De Koninck, I. Diouf, N. Doyon, On the truncated kernel function, J. Int. Seq. 15 (2012) #12.3.2.
FORMULA
a(n) = A007947(n)/A006530(n).
MAPLE
A293810 := proc(n)
if n =1 then
1;
else
A007947(n)/A006530(n) ;
end if;
end proc:
seq(A293810(n), n=1..120) ;
MATHEMATICA
Array[Times @@ Most@ FactorInteger[#][[All, 1]] &, 105] (* Michael De Vlieger, Dec 16 2017 *)
PROG
(Scheme) (define (A293810 n) (/ (A007947 n) (A006530 n))) ;; Antti Karttunen, Dec 16 2017
CROSSREFS
Sequence in context: A187279 A076820 A206824 * A356553 A324369 A276781
KEYWORD
nonn
AUTHOR
R. J. Mathar, Oct 16 2017
EXTENSIONS
Amended the name with the explanation from the Comments section; also more terms added by Antti Karttunen, Dec 16 2017
STATUS
approved