login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293349
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + n, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
2
1, 3, 8, 18, 35, 64, 112, 192, 322, 534, 878, 1436, 2340, 3804, 6174, 10010, 16219, 26266, 42524, 68831, 111398, 180274, 291719, 472042, 763812, 1235907, 1999774, 3235738, 5235571, 8471370, 13707004, 22178439, 35885511, 58064020, 93949603, 152013697
OFFSET
0,2
COMMENTS
The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A293076 for a guide to related sequences.
Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio.
EXAMPLE
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(0) + 2 = 8;
a(3) = a(2) + a(1) + b(1) + 3 = 18.
Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14,...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + n;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A293349 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
Cf. A001622 (golden ratio), A293076.
Sequence in context: A367188 A081489 A055278 * A036628 A004035 A169763
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 28 2017
STATUS
approved