login
A293243
Numbers that cannot be written as a product of distinct squarefree numbers.
6
4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336
OFFSET
1,1
COMMENTS
First differs from A212164 at a(441).
Numbers n such that A050326(n) = 0. - Felix Fröhlich, Oct 04 2017
Includes A246547, and all numbers of the form p^a*q^b where p and q are primes, a >= 1 and b >= 3. - Robert Israel, Oct 10 2017
LINKS
EXAMPLE
120 is not in the sequence because 120 = 2*6*10. 3600 is not in the sequence because 3600 = 2*6*10*30.
MAPLE
N:= 1000: # to get all terms <= N
A:= Vector(N):
A[1]:= 1:
for n from 2 to N do
if numtheory:-issqrfree(n) then
S:= [$1..N/n]; T:= n*S; A[T]:= A[T]+A[S]
fi;
od:
select(t -> A[t]=0, [$1..N]); # Robert Israel, Oct 10 2017
MATHEMATICA
nn=500;
sqfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[sqfacs[n/d], Min@@#>d&]], {d, Select[Rest[Divisors[n]], SquareFreeQ]}]];
Select[Range[nn], Length[sqfacs[#]]===0&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 03 2017
STATUS
approved