login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293024
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(exp(x) - Sum_{i=0..k} x^i/i!).
9
1, 1, 1, 1, 0, 2, 1, 0, 1, 5, 1, 0, 0, 1, 15, 1, 0, 0, 1, 4, 52, 1, 0, 0, 0, 1, 11, 203, 1, 0, 0, 0, 1, 1, 41, 877, 1, 0, 0, 0, 0, 1, 11, 162, 4140, 1, 0, 0, 0, 0, 1, 1, 36, 715, 21147, 1, 0, 0, 0, 0, 0, 1, 1, 92, 3425, 115975, 1, 0, 0, 0, 0, 0, 1, 1, 36, 491, 17722, 678570
OFFSET
0,6
COMMENTS
A(n,k) is the number of set partitions of [n] into blocks of size > k.
LINKS
E. A. Enneking and J. C. Ahuja, Generalized Bell numbers, Fib. Quart., 14 (1976), 67-73.
FORMULA
E.g.f. of column k: Product_{i>k} exp(x^i/i!).
A(0,k) = 1, A(1,k) = A(2,k) = ... = A(k,k) = 0 and A(n,k) = Sum_{i=k..n-1} binomial(n-1,i)*A(n-1-i,k) for n > k.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, 0, ...
2, 1, 0, 0, 0, 0, 0, 0, ...
5, 1, 1, 0, 0, 0, 0, 0, ...
15, 4, 1, 1, 0, 0, 0, 0, ...
52, 11, 1, 1, 1, 0, 0, 0, ...
203, 41, 11, 1, 1, 1, 0, 0, ...
877, 162, 36, 1, 1, 1, 1, 0, ...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, add(
A(n-j, k)*binomial(n-1, j-1), j=1+k..n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..14); # Alois P. Heinz, Sep 28 2017
MATHEMATICA
A[0, _] = 1;
A[n_, k_] /; 0 <= k <= n := A[n, k] = Sum[A[n-j, k] Binomial[n-1, j-1], {j, k+1, n}];
A[_, _] = 0;
Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2019 *)
PROG
(Ruby)
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(k, n)
ary = [1]
(1..n).each{|i| ary << (k..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ary[-1 - j]}}
ary
end
def A293024(n)
a = []
(0..n).each{|i| a << A(i, n - i)}
ary = []
(0..n).each{|i|
(0..i).each{|j|
ary << a[i - j][j]
}
}
ary
end
p A293024(20)
CROSSREFS
Columns k=0..5 give A000110, A000296, A006505, A057837, A057814, A293025.
Rows n=0..1 give A000012, A000007.
Main diagonal gives A000007.
Cf. A182931, A282988 (as triangle), A293051, A293053.
Sequence in context: A339650 A266493 A075374 * A292948 A210872 A360753
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Sep 28 2017
STATUS
approved