login
A292942
a(n) = A292941(A163511(n)).
8
0, 1, 2, 2, 4, 4, 4, 4, 8, 8, 8, 9, 8, 8, 8, 9, 16, 16, 16, 16, 16, 16, 18, 19, 16, 16, 16, 16, 16, 16, 18, 18, 32, 32, 32, 33, 32, 32, 32, 33, 32, 32, 32, 32, 36, 36, 38, 39, 32, 32, 32, 33, 32, 32, 32, 32, 32, 32, 32, 33, 36, 36, 36, 37, 64, 64, 64, 64, 64, 64, 66, 67, 64, 64, 64, 64, 64, 64, 66, 66, 64, 64, 64, 65, 64, 64, 64, 65, 72, 72, 72, 72, 76, 76
OFFSET
0,3
COMMENTS
Because A292941(n) = a(A243071(n)), the sequence works as a "masking function" where the 1-bits in a(n) (always a subset of the 1-bits in binary expansion of n) indicate which numbers are of the form 6k+1 in binary tree A163511 (or its mirror image tree A005940) on that trajectory which leads from the root of the tree to the node containing A163511(n).
The AND - XOR formula is just a restatement of the fact that J(-3|n) = J(-1|n)*J(3|n), as the Jacobi-symbol is multiplicative (also) with respect to its upper argument.
FORMULA
a(n) = A292941(A163511(n)).
a(n) = A292264(n) AND (A292254(n) XOR A292274(n)), where AND is bitwise-and (A004198) and XOR is bitwise-XOR (A003987). [See comments.]
For all n >= 0, a(n) + A292944(n) + A292946(n) = n.
PROG
(Scheme) (define (A292942 n) (A292941 (A163511 n)))
CROSSREFS
Cf. also A292247, A292248, A292254, A292256, A292264, A292271, A292274, A292592, A292593, A292944, A292946 (for similarly constructed sequences).
Sequence in context: A053644 A279170 A292254 * A039593 A327649 A265529
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 28 2017
STATUS
approved