login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290639
a(n) = largest number <= prime(n) such that 1 + a(1)*a(2)*...*a(n) is prime.
2
2, 3, 5, 7, 11, 11, 16, 15, 21, 22, 30, 36, 41, 43, 34, 36, 56, 60, 48, 55, 54, 59, 57, 75, 42, 93, 93, 103, 104, 75, 126, 123, 133, 129, 148, 104, 146, 162, 159, 128, 177, 159, 153, 175, 184, 187, 193, 223, 210, 151, 164, 170, 240, 239, 254, 261, 201, 261, 253, 254, 170, 255, 297, 257, 270, 291, 309, 267, 341, 310, 261, 316, 363, 329, 373, 361, 327, 381, 373, 401, 346, 351, 379
OFFSET
1,1
COMMENTS
a(n) = prime(n) for n = 1, 2, 3, 4, 5, 13, 14, ...
If a(n) = 1 and a(n+1) > 1, then prime(n) < a(n+1) <= prime(n+1).
Conjecture: a(n) > 1 for every n. - Thomas Ordowski, Aug 08 2017
Indeed, a(n) > n for all n <= 460. - Robert Israel, Aug 08 2017
LINKS
MAPLE
A[1]:= 2: P:= 2:
for n from 2 to 200 do
for k from ithprime(n) by -1 do
if isprime(1+P*k) then A[n]:= k; P:= P*k; break fi
od;
od:
seq(A[i], i=1..200); # Robert Israel, Aug 08 2017
MATHEMATICA
a[1] = 2; a[n_] := a[n] = Module[{k = Prime[n], r = Product[a[i], {i, 1, n - 1}]}, While[! PrimeQ[1 + k*r], k--]; k]; Array[a, 100] (* Amiram Eldar, Jan 19 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Aug 08 2017
EXTENSIONS
More terms from Robert Israel, Aug 08 2017
STATUS
approved