login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290637
Numerators of the sequence 1, 1/2, (1/2)/(3/4), ((1/2)/(3/4))/((5/6)/(7/8)), ... .
2
1, 1, 2, 7, 286, 144305, 276620298878, 4929053594885296570083, 2778177345800469611391891486368048702791639566906088871615186
OFFSET
0,3
COMMENTS
The sequence of fractions f(n) tends to 1/sqrt(2).
Factors of numerators before cancellation (1,1,4,6,7,10,11,13,16,18,19,...) coincide with A026147 (for n>0).
Factors of denominators before cancellation (1,2,3,5,8,9,12,14,15,17,...) coincide with A181155 (for n>0).
REFERENCES
Jean-Paul Allouche and Jeffrey Shallit, The Ubiquitous Prouhet-Thue-Morse Sequence, in C. Ding, T. Helleseth, N. Niederreiter (eds.), Sequences and their Applications: Proceedings of SETA '98, Springer-Verlag, London, 1999, pp. 1-16.
Michael Trott, Exercises of The Mathematica GuideBook for Numerics, Chapter 2, p. 33.
LINKS
Michael Trott, Mathematica Guidebooks, Sample Exercises Numerics p. 33.
Donald R. Woods, David Robbins and Gustaf Gripenberg, Solution to Problem E2692, American Mathematical Monthly, Vol. 86, No. 5 (May 1979), pp. 394-395.
FORMULA
f(n) = Product_{k=0..2^(n-1)-1} ((2k+1)/(2k+2))^((-1)^tm(k)), where tm(k) is the Thue-Morse sequence A010060.
EXAMPLE
f(3): 1*4*6*7/(2*3*5*8) = 7/10, hence a(3) = 7.
f(5): 1*4*6*7*10*11*13*16*18*19*21*24*25*28*30*31 / (2*3*5*8*9*12*14*15*17*20*22*23*26*27*29*32) = 144305 / 204102 = 0.707024..., hence a(5) = 144305.
Sequence of fractions f(n) begin: 1/1, 1/2, 2/3, 7/10, 286/405, 144305/204102, ...
MAPLE
g:= (i, j)-> `if`(j=0, i, g(i, j-1)/g(i+2^(j-1), j-1)):
a:= n-> numer(g(1, n)):
seq(a(n), n=0..10); # Alois P. Heinz, Aug 08 2017
MATHEMATICA
f[1] = id[1]/id[2]; f[n_] := f[n] = f[n-1]/(f[n-1] /. id[k_] :> id[k + 2^(n-1)]); a[n_]:= f[n] /. id -> Identity // Numerator; Array[a, 8]
PROG
(Python)
from sympy.core.cache import cacheit
from sympy import numer, Rational
@cacheit
def g(i, j): return Rational(i) if j==0 else g(i, j - 1)/g(i + 2**(j - 1), j - 1)
def a(n): return numer(g(1, n))
print([a(n) for n in range(11)]) # Indranil Ghosh, Aug 09 2017, after Maple code
CROSSREFS
Cf. A010060, A026147, A094541 (supersequence of numerators), A094542 (supersequence of denominators), A181155, A290638 (denominators).
Sequence in context: A037067 A012987 A187603 * A260967 A367788 A128456
KEYWORD
nonn,frac
AUTHOR
STATUS
approved