login
A289281
Square array whose rows m >= 2 hold the limit under iterations of the morphism { x -> (x, ..., x+k-1) if k|x ; x -> x+1 otherwise }, starting with (0); read by falling antidiagonals.
1
0, 1, 0, 2, 1, 0, 2, 2, 1, 0, 3, 2, 2, 1, 0, 2, 3, 3, 2, 1, 0, 3, 3, 2, 3, 2, 1, 0, 4, 3, 3, 4, 3, 2, 1, 0, 2, 4, 4, 2, 4, 3, 2, 1, 0, 3, 5, 3, 3, 5, 4, 3, 2, 1, 0, 4, 3, 4, 4, 2, 5, 4, 3, 2, 1, 0, 4, 4, 4, 5, 3, 6, 5, 4, 3, 2, 1, 0, 5, 5, 5, 3, 4, 2, 6, 5, 4, 3, 2, 1, 0, 2, 3, 6, 4, 5, 3, 7, 6, 5, 4, 3, 2, 1, 0, 3, 4, 7, 5, 6, 4, 2, 7, 6, 5, 4, 3, 2, 1, 0, 4, 5, 4, 5, 3, 5, 3, 8, 7, 6, 5, 4
OFFSET
2,4
COMMENTS
The generalization of A104234 (row 2) and A288577 (row 3) to arbitrary m.
LINKS
EXAMPLE
The array starts (first row: m=2)
[ 0 1 2 2 3 2 3 4 2 3 4 4 5 2 3 4 4 5 4 5 6 2 3 4 4 ...]
[ 0 1 2 2 3 3 3 4 5 3 4 5 3 4 5 5 6 3 4 5 5 6 3 4 5 ...]
[ 0 1 2 3 2 3 4 3 4 4 5 6 7 4 4 5 6 7 4 5 6 7 6 7 8 ...]
[ 0 1 2 3 4 2 3 4 5 3 4 5 5 6 7 8 9 4 5 5 6 7 8 9 5 ...]
[ 0 1 2 3 4 5 2 3 4 5 6 3 4 5 6 6 7 8 9 10 11 4 5 6 6 ...]
[ 0 1 2 3 4 5 6 2 3 4 5 6 7 3 4 5 6 7 7 8 9 10 11 12 13 ...]
[ 0 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 8 9 10 11 ...]
[ 0 1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 3 4 5 6 7 8 9 9 ...]
[ 0 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 10 3 4 5 6 7 8 ...]
[ 0 1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 11 3 4 5 6 ...]
[ 0 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 3 4 ...]
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 13 ...]
...
It is easy to prove that row m starts with (0, ..., m-1; 2, ..., m; 3, ..., m; m, ..., 2m-1; ...).
PROG
(PARI) A289281_row(n=30, k=2, a=[0])={while(#a<n, a=concat(vector(#a, j, if(a[j]%k, a[j]+1, vector(k, i, a[j]+i-1))))); a}
CROSSREFS
Cf. A104234 (row 2), A288577 (row 3).
Sequence in context: A045832 A287528 A328312 * A374996 A212957 A035393
KEYWORD
nonn,tabl
AUTHOR
M. F. Hasler, Jul 01 2017
STATUS
approved