login
A288741
3-limiting word of the mapping 00->1000, 10->01, starting with 00.
6
0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0
OFFSET
1
COMMENTS
Iterates of the mapping, starting with 00:
00
1000
011000
01011000
0011011000
10001011011000
011000011011011000
0101100001011011011000
00110110000011011011011000
1000101101100010001011011011011000
The 3-limiting word is the limit of the n-th iterates for n == 3 mod 4.
Conjecture: the number of letters (0's and 1's) in the n-th iterate is given by A288732(n), for n >= 0.
LINKS
EXAMPLE
The first two n-th iterates for n == 3 mod 4 are
01011000
0101100001011011011000
00110110000011011011011000
MATHEMATICA
s = {0, 0}; w[0] = StringJoin[Map[ToString, s]];
w[n_] := StringReplace[w[n - 1], {"00" -> "1000", "10" -> "01"}]
Table[w[n], {n, 0, 8}]
st = ToCharacterCode[w[23]] - 48 (* A288741 *)
Flatten[Position[st, 0]] (* A288742 *)
Flatten[Position[st, 1]] (* A285697 *)
CROSSREFS
Cf. A288729 (0-limiting word), A288732, A288733 (1-limiting word), A288736 (2-limiting word), A288742, A285697.
Sequence in context: A353810 A115516 A285830 * A341684 A327183 A347870
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 17 2017
STATUS
approved