login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286762
Indices k such that A195441(k) = A195441(k+1).
5
0, 21, 22, 45, 46, 57, 70, 94, 105, 118, 142, 147, 165, 171, 177, 187, 190, 214, 221, 222, 225, 237, 238, 261, 267, 281, 286, 291, 313, 315, 318, 334, 345, 350, 357, 358, 381, 382, 387, 403, 430, 437, 441, 448, 465, 477, 478, 501, 507, 538, 555, 558, 561, 565
OFFSET
1,2
COMMENTS
k is in this sequence if and only if the primes p less than or equal to (k+2)/(2+(k mod 2)) such that the sum of digits of k+1 in base p is at least p are also the primes less than or equal to (k+3)/(2+((k+1) mod 2)) such that the sum of digits of k+2 in base p is at least p.
For the comment above and the fact that the sequence is infinite, see Thm. 2 in "Power-Sum Denominators" and Cor. 3 in "The denominators of power sums of arithmetic progressions". - Bernd C. Kellner and Jonathan Sondow, May 24 2017
LINKS
Bernd C. Kellner, On a product of certain primes, J. Number Theory 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, The denominators of power sums of arithmetic progressions, Integers 18 (2018), Article #A95, 17 pp.; arXiv:1705.05331 [math.NT], 2017.
EXAMPLE
21 and 22 are in this sequence because {2, 3, 5} is the set of primes which meet the given constraints. Let sd(n, p) denote the sum of digits of n in base p, then we have:
2 <= sd(22, 2) = 3; 3 <= sd(22, 3) = 4; 5 <= sd(22, 5) = 6;
2 <= sd(23, 2) = 4; 3 <= sd(23, 3) = 5; 5 <= sd(23, 5) = 7;
2 <= sd(24, 2) = 2; 3 <= sd(24, 3) = 4; 5 <= sd(24, 5) = 8.
All other candidates do not satisfy the requirements: sd(22,7) = 4; sd(22,11) = 2; sd(23,7) = 5; sd(24,7) = 6; sd(24,11) = 4; sd(24,13) = 12.
MATHEMATICA
-1 + SequencePosition[Table[Denominator[Together[(BernoulliB[n + 1, x] - BernoulliB[n + 1])]], {n, 0, 600}], w_ /; And[SameQ @@ w, Length@ w == 2]][[All, 1]] (* Michael De Vlieger, Sep 22 2017, after Jonathan Sondow at A195441 *)
PROG
(Julia)
function A286762_list(bound::Int)
L = fmpz[]; a = fmpz(0)
for n in 0:bound
u = A195441(n)
a == u && push!(L, n-1)
a = u
end
L end
println(A286762_list(566))
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, May 14 2017
STATUS
approved