login
A286625
Square array A(n,k) = A276945(n,k)/A002110(k-1), read by descending antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
9
1, 1, 3, 1, 4, 4, 1, 6, 6, 5, 1, 8, 10, 7, 7, 1, 12, 14, 11, 16, 9, 1, 14, 22, 15, 36, 19, 10, 1, 18, 26, 23, 78, 41, 21, 11, 1, 20, 34, 27, 144, 85, 45, 22, 13, 1, 24, 38, 35, 222, 155, 91, 46, 31, 15, 1, 30, 46, 39, 324, 235, 165, 92, 71, 34, 16, 1, 32, 58, 47, 438, 341, 247, 166, 155, 76, 36, 17, 1, 38, 62, 59, 668, 457, 357, 248, 287, 162, 80, 37, 18
OFFSET
1,3
FORMULA
A(n,k) = A276945(n, k) / A002110(k-1).
EXAMPLE
The top left 12 X 12 corner of the array:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38
4, 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74
5, 7, 11, 15, 23, 27, 35, 39, 47, 59, 63, 75
7, 16, 36, 78, 144, 222, 324, 438, 668, 900, 1148, 1518
9, 19, 41, 85, 155, 235, 341, 457, 691, 929, 1179, 1555
10, 21, 45, 91, 165, 247, 357, 475, 713, 957, 1209, 1591
11, 22, 46, 92, 166, 248, 358, 476, 714, 958, 1210, 1592
13, 31, 71, 155, 287, 443, 647, 875, 1335, 1799, 2295, 3035
15, 34, 76, 162, 298, 456, 664, 894, 1358, 1828, 2326, 3072
16, 36, 80, 168, 308, 468, 680, 912, 1380, 1856, 2356, 3108
17, 37, 81, 169, 309, 469, 681, 913, 1381, 1857, 2357, 3109
PROG
(Scheme)
(define (A286625 n) (A286625bi (A002260 n) (A004736 n)))
(define (A286625bi row col) (/ (A276945bi row col) (A002110 (- col 1))))
CROSSREFS
Transpose: A286623.
Column 1: A276155.
Row 1: A000012, Row 2: A008864, Row 3: A100484, Row 4: A072055, Row 5: A023523 (from its second term onward), Row 6: A286624.
Cf. A276617 (analogous array).
Sequence in context: A286623 A246340 A246354 * A129246 A125608 A182001
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Jun 28 2017
STATUS
approved