OFFSET
1,2
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..16384
Eric Weisstein's World of Mathematics, Pairing Function
FORMULA
PROG
(PARI)
A032742(n) = if(1==n, n, n/vecmin(factor(n)[, 1]));
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
for(n=1, 16384, write("b286379.txt", n, " ", A286379(n)));
(Scheme) (define (A286379 n) (if (= 1 n) n (* (/ 1 2) (+ (expt (+ (A032742 n) (A278222 n)) 2) (- (A032742 n)) (- (* 3 (A278222 n))) 2))))
(Python)
from sympy import factorint, divisors
import math
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def A(n): return n - 2**int(math.floor(math.log(n, 2)))
def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
def a005940(n): return b(n - 1)
def P(n):
f = factorint(n)
return sorted([f[i] for i in f])
def a046523(n):
x=1
while True:
if P(n) == P(x): return x
else: x+=1
def a278222(n): return a046523(a005940(n + 1))
def a(n): return 1 if n==1 else T(divisors(n)[-2], a278222(n)) # Indranil Ghosh, May 13 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 13 2017
STATUS
approved