login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286237
Triangular table: T(n,k) = 0 if k does not divide n, otherwise T(n,k) = P(phi(k), n/k), where P is sequence A000027 used as a pairing function N x N -> N, and phi is Euler totient function, A000010. Table is read by rows as T(1,1), T(2,1), T(2,2), etc.
5
1, 2, 1, 4, 0, 3, 7, 2, 0, 3, 11, 0, 0, 0, 10, 16, 4, 5, 0, 0, 3, 22, 0, 0, 0, 0, 0, 21, 29, 7, 0, 5, 0, 0, 0, 10, 37, 0, 8, 0, 0, 0, 0, 0, 21, 46, 11, 0, 0, 14, 0, 0, 0, 0, 10, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 67, 16, 12, 8, 0, 5, 0, 0, 0, 0, 0, 10, 79, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 78, 92, 22, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 21, 106, 0, 17, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36
OFFSET
1,2
COMMENTS
Equally: square array A(n,k) = P(A000010(n), (n+k-1)/n) if n divides (n+k-1), 0 otherwise, read by descending antidiagonals as A(1,1), A(1,2), A(2,1), etc. Here P is sequence A000027 used as a pairing function N x N -> N.
When viewed as a triangular table, this sequence packs the values of phi(k) and quotient n/k (when it is integral) to a single value with the pairing function A000027. The two "components" can be accessed with functions A002260 & A004736, which allows us generate from this sequence various sums related to necklace enumeration (among other things).
For example, we have:
Sum_{i=A000217(n-1) .. A000217(n)} [a(i) > 0] * A002260(a(i)) * 2^(A004736(a(i))) = A053635(n).
and
Sum_{i=A000217(n-1) .. A000217(n)} [a(i) > 0] * A002260(a(i)) * 3^(A004736(a(i))) = A054610(n).
FORMULA
As a triangle (with n >= 1, 1 <= k <= n):
T(n,k) = 0 if k does not divide n, otherwise T(n,k) = (1/2)*(2 + ((A000010(k)+(n/k))^2) - A000010(k) - 3*(n/k)).
T(n,k) = A051731(n,k) * A286235(n,k).
Other identities. For all n >= 1:
T(prime(n),prime(n)) = A000217(prime(n)-1).
EXAMPLE
The first fifteen rows of the triangle:
1,
2, 1,
4, 0, 3,
7, 2, 0, 3,
11, 0, 0, 0, 10,
16, 4, 5, 0, 0, 3,
22, 0, 0, 0, 0, 0, 21,
29, 7, 0, 5, 0, 0, 0, 10,
37, 0, 8, 0, 0, 0, 0, 0, 21,
46, 11, 0, 0, 14, 0, 0, 0, 0, 10,
56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55,
67, 16, 12, 8, 0, 5, 0, 0, 0, 0, 0, 10,
79, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 78,
92, 22, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 21,
106, 0, 17, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36
---------------------------------------------------------------
Note how triangle A286239 contains on each row the same numbers in the same "divisibility-allotted" positions, but in reverse order.
In the following examples: a = this sequence interpreted as a one-dimensional sequence, A = interpreted as a square array, T = interpreted as a triangular table, P = A000027 interpreted as a pairing function N x N -> N, phi = Euler totient function, A000010.
---
a(7) = A(1,4) = T(4,1) = P(phi(1),4/1) = P(1,4) = 1+(((1+4)^2 - 1 - (3*4))/2) = 7.
a(30) = A(2,7) = T(8,2) = P(phi(2),8/2) = P(1,4) (i.e., same as above) = 7.
a(10) = A(5,1) = T(5,5) = P(phi(5),5/5) = P(4,1) = 1+(((4+1)^2 - 4 - (3*1))/2) = 10.
a(110) = A(5,11) = T(15,5) = P(phi(5),15/5) = P(4,3) = 1+((4+3)^2 - 4 - (3*3))/2 = 19.
PROG
(Scheme)
(define (A286237 n) (A286237bi (A002260 n) (A004736 n)))
(define (A286237bi row col) (if (not (zero? (modulo (+ row col -1) row))) 0 (let ((a (A000010 row)) (b (quotient (+ row col -1) row))) (* (/ 1 2) (+ (expt (+ a b) 2) (- a) (- (* 3 b)) 2)))))
;; Alternatively, with triangular indexing:
(define (A286237 n) (A286237tr (A002024 n) (A002260 n)))
(define (A286237tr n k) (if (not (zero? (modulo n k))) 0 (let ((a (A000010 k)) (b (/ n k))) (* (/ 1 2) (+ (expt (+ a b) 2) (- a) (- (* 3 b)) 2)))))
;; Note that: (A286237tr n k) is equal to (A286237bi k (+ 1 (- n k))).
(Python)
from sympy import totient
def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
def t(n, k): return 0 if n%k!=0 else T(totient(k), n/k)
for n in range(1, 21): print [t(n, k) for k in range(1, n + 1)] # Indranil Ghosh, May 10 2017
CROSSREFS
Transpose: A286236.
Cf. A000124 (left edge of the triangle), A000217 (every number at the right edge is a triangular number).
Sequence in context: A334112 A355625 A286238 * A059781 A233905 A285284
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, May 05 2017
STATUS
approved