OFFSET
1,1
COMMENTS
For primes p = (2^a(n) + 3)/5, n >= 2, there are exactly 5 positive integers m for which the exponents of 2 and p in the prime power factorization of m! are both powers of 2 (for a proof see the Shevelev link (Theorem 2)).
The sequence of such primes p begins 7, 103, 6710887, 7036874417767, etc.
a(11) > 160000. - Michael S. Branicky, Jul 12 2024
LINKS
V. Shevelev, Compact integers and factorials, Acta Arithmetica 126 (2007), no. 3, 195-236.
FORMULA
a(n) == 1 (mod 4).
MATHEMATICA
Select[Range[7500], PrimeQ[(2^# + 3)/5] &] (* Michael De Vlieger, Mar 24 2017 *)
PROG
(PARI) is(n)=n%4==1 && isprime((2^n+3)/5) \\ Charles R Greathouse IV, Mar 25 2017
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Vladimir Shevelev, Mar 24 2017
EXTENSIONS
Terms a(4)-a(9) from Peter J. C. Moses, Mar 24 2017
a(10) from Giovanni Resta, Mar 24 2017
STATUS
approved