login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284286
Expansion of eta(q^2)^4 / eta(q)^8 in powers of q.
6
1, 8, 40, 160, 552, 1712, 4896, 13120, 33320, 80872, 188784, 425952, 932640, 1988080, 4137024, 8422848, 16810536, 32943760, 63482760, 120440608, 225217904, 415498496, 756920160, 1362645440, 2425895712, 4273590392, 7454092720, 12879684160, 22056267840
OFFSET
0,2
LINKS
FORMULA
a(n) = (-1)^n * A004405(n).
a(0) = 1, a(n) = (8/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0.
G.f.: Prod_{k>0} (1 - x^(2k))^4 / (1 - x^k)^8.
MATHEMATICA
eta = QPochhammer;
CoefficientList[eta[q^2]^4/eta[q]^8 + O[q]^30, q] (* Jean-François Alcover, Feb 21 2021 *)
PROG
(Julia) # JacobiTheta4 is defined in A002448.
A284286List(len) = JacobiTheta4(len, -4)
A284286List(29) |> println # Peter Luschny, Mar 12 2018
CROSSREFS
Column k=4 of A288515.
Sequence in context: A128639 A341365 A004405 * A001789 A074412 A364619
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 02 2017
STATUS
approved