login
A283988
a(n) = A002487(n-1) AND A002487(n), where AND is bitwise-and (A004198).
7
0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 4, 4, 3, 0, 0, 5, 2, 2, 5, 0, 0, 3, 4, 4, 1, 0, 4, 1, 0, 0, 3, 2, 2, 3, 8, 8, 5, 4, 4, 1, 0, 0, 1, 4, 4, 5, 8, 8, 3, 2, 2, 3, 0, 0, 1, 4, 0, 1, 6, 2, 1, 4, 8, 9, 4, 4, 11, 2, 2, 1, 0, 8, 1, 2, 10, 3, 0, 0, 5, 0, 0, 1, 0, 0, 3, 0, 0, 9, 2, 2, 9, 0, 0, 3, 0, 0, 1, 0, 0, 5, 0, 0, 3, 10, 2, 1, 8, 0, 1, 2, 2, 11, 4
OFFSET
1,6
FORMULA
a(n) = A002487(n-1) AND A002487(n), where AND is bitwise-and (A004198).
a(n) = A283986(n) - A283987(n).
a(n) = A007306(n) - A283986(n) = (A007306(n) - A283987(n))/2.
a(n) = A283978((2*n)-1).
MATHEMATICA
a[0] = 0; a[1] = 1; a[n_] := If[EvenQ@ n, a[n/2], a[(n - 1)/2] + a[(n + 1)/2]]; Table[BitAnd[a[n - 1], a@ n], {n, 120}] (* Michael De Vlieger, Mar 22 2017 *)
PROG
(Scheme) (define (A283988 n) (A004198bi (A002487 (- n 1)) (A002487 n))) ;; Where A004198bi implements bitwise-AND (A004198).
(PARI) A(n) = if(n<2, n, if(n%2, A(n\2) + A((n + 1)/2), A(n/2)));
for(n=1, 120, print1(bitand(A(n - 1), A(n)), ", ")) \\ Indranil Ghosh, Mar 23 2017
(Python)
from functools import reduce
def A283988(n): return sum(reduce(lambda x, y:(x[0], x[0]+x[1]) if int(y) else (x[0]+x[1], x[1]), bin(n)[-1:2:-1], (1, 0)))&sum(reduce(lambda x, y:(x[0], x[0]+x[1]) if int(y) else (x[0]+x[1], x[1]), bin(n-1)[-1:2:-1], (1, 0))) if n>1 else 0 # Chai Wah Wu, May 05 2023
CROSSREFS
Odd bisection of A283978.
Cf. A283973 (positions of zeros), A283974 (nonzeros).
Sequence in context: A287320 A210502 A350797 * A276204 A365573 A370278
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Mar 21 2017
STATUS
approved