login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280794
E.g.f.: cosh( Integral exp(x^2) dx )^2.
2
1, 2, 24, 576, 22656, 1302528, 101763072, 10295230464, 1303603347456, 201345802960896, 37165722291929088, 8062848653812826112, 2027520921133859733504, 584153907885564625944576, 190935313631330908457926656, 70201900206284691681897873408, 28820073606162151615036529836032
OFFSET
0,2
LINKS
FORMULA
E.g.f.: ( cosh( Integral 2*exp(x^2) dx ) + 1 ) / 2.
E.g.f.: cosh( sqrt(Pi)/2 * i * erf(i*x) )^2.
E.g.f.: ( cosh( sqrt(Pi) * i * erf(i*x) ) + 1 )/ 2.
EXAMPLE
E.g.f.: A(x) = 1 + 2*x^2/2! + 24*x^4/4! + 576*x^6/6! + 22656*x^8/8! + 1302528*x^10/10! + 101763072*x^12/12! + 10295230464*x^14/14! + 1303603347456*x^16/16! + 201345802960896*x^18/18! + 37165722291929088*x^20/20! +...
RELATED SERIES.
Integral exp(x^2) dx = x + 2*x^3/3! + 12*x^5/5! + 120*x^7/7! + 1680*x^9/9! + 30240*x^11/11! + 665280*x^13/13! +...+ A001813(n-1)*x^(2*n-1)/(2*n-1)! +...
Cosh( Integral exp(x^2) dx ) = 1 + x^2/2! + 9*x^4/4! + 153*x^6/6! + 4209*x^8/8! + 172689*x^10/10! + 9918009*x^12/12! +...+ A279840(2*n)*x^(2*n)/(2*n)! +...
Sinh( Integral exp(x^2) dx ) = x + 3*x^3/3! + 33*x^5/5! + 723*x^7/7! + 25377*x^9/9! + 1269699*x^11/11! +...+ A279840(2*n+1)*x^(2*n+1)/(2*n+1)! +...
Coefficients a(n) divided by 2^n begin:
[1, 1, 6, 72, 1416, 40704, 1590048, 80431488, 5092200576, 393253521408, 36294650675712, 3936937819244544, ...].
MATHEMATICA
With[{nn = 50}, CoefficientList[Series[Cosh[Sqrt[Pi]/2*I*Erf[I*x]]^2, {x, 0, nn}], x] Range[0, nn]!][[;; ;; 2]] (* G. C. Greubel, Apr 11 2017 *)
PROG
(PARI) {a(n) = (2*n)!*polcoeff( cosh( intformal( exp(x^2 +x*O(x^(2*n)) ) ) )^2, 2*n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A090732 A377427 A014298 * A090316 A128578 A186632
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 23 2017
STATUS
approved