login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186632
E.g.f. satisfies: A(A(A(x))) = d/dx A(x)^2/2 with A(0)=0, A'(0)=1.
0
1, 2, 24, 588, 22560, 1201320, 82875744, 7085373456, 727827579648, 87810122446560, 12227912455651200, 1938610503725962176, 346053263639068417536, 68919212804888587849344
OFFSET
1,2
FORMULA
E.g.f. satisfies: A(A(A(x))) = A'(x)*A(x).
E.g.f. satisfies: A(A(A(A(x)))) = A'(A(x))*A(A(x)) = A( A'(x)*A(x) ).
E.g.f. satisfies: A(A(A(A(A(x))))) = A'(A(A(x)))*A'(x)*A(x).
n(n-1) divides a(n) for n>=2.
EXAMPLE
E.g.f: A(x) = x + 2*x^2/2! + 24*x^3/3! + 588*x^4/4! + 22560*x^5/5! +...
A(x)^2/2 = x^2/2! + 6*x^3/3! + 108*x^4/4! + 3420*x^5/5! + 158760*x^6/6! +...
Iterations of the e.g.f. begin:
A(A(x)) = x + 4*x^2/2! + 60*x^3/3! + 1680*x^4/4! + 70920*x^5/5! +...
A(A(A(x))) = x + 6*x^2/2! + 108*x^3/3! + 3420*x^4/4! + 158760*x^5/5! +...
A(A(A(A(x)))) = x + 8*x^2/2! + 168*x^3/3! + 5952*x^4/4! + 302640*x^5/5! +...
A(A(A(A(A(x))))) = x + 10*x^2/2! + 240*x^3/3! + 9420*x^4/4! + 522000*x^5/5! +...
Related expansions:
A'(A(x)) = 1 + 2*x + 28*x^2/2! + 780*x^3/3! + 33384*x^4/4! + 1956120*x^5/5! +...
A'(A(A(x))) = 1 + 2*x + 32*x^2/2! + 996*x^3/3! + 46944*x^4/4! + 2998680*x^5/5! +...
PROG
(PARI) {a(n)=local(A=x+x^2+sum(m=3, n-1, a(m)*x^m/m!)+x*O(x^n)); if(n<3, n!*polcoeff(A, n), n!*polcoeff(subst(A, x, subst(A, x, A))-deriv(A^2/2), n)/(n-2))}
CROSSREFS
Cf. A179420.
Sequence in context: A280794 A090316 A128578 * A089835 A210909 A009251
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 24 2011
STATUS
approved