login
A279594
Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(6)/2.
1
1, -2, 1, 0, -1, 3, -3, 1, 0, -1, 3, -3, 2, -4, 5, -1, -3, 7, -14, 15, -6, -2, 8, -18, 22, -17, 18, -17, -4, 29, -47, 69, -71, 28, 24, -63, 110, -136, 109, -76, 36, 76, -213, 296, -348, 316, -92, -215, 455, -664, 767, -595, 270, 102, -697, 1383, -1745, 1742
OFFSET
0,2
LINKS
FORMULA
G.f.: 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(6)/2.
MATHEMATICA
z = 30; r = Sqrt[6]/2;
f[x_] := f[x] = Sum[Floor[r*(k + 1)] x^k, {k, 0, z}]; f[x]
CoefficientList[Series[1/f[x], {x, 0, 2*z}], x]
PROG
(PARI) r = sqrt(6)/2;
Vec(1/sum(k=0, 60, floor(r*(k + 1))*x^k) + O(x^61)) \\ Indranil Ghosh, Mar 30 2017
CROSSREFS
Cf. A279607.
Sequence in context: A286509 A213887 A279589 * A335162 A077593 A363778
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Dec 16 2016
STATUS
approved