login
A279591
Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = e/2.
1
1, -2, 0, 3, -2, -4, 8, 0, -16, 16, 16, -48, 16, 79, -108, -52, 265, -156, -372, 672, 80, -1408, 1216, 1600, -3968, 704, 7169, -8391, -6000, 22463, -10045, -34660, 53708, 16192, -122112, 87120, 156688, -325360, 7375, 636819, -636074, -639771, 1883405
OFFSET
0,2
LINKS
FORMULA
G.f.: 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = e/2.
MATHEMATICA
z = 30; r = E/2;
f[x_] := f[x] = Sum[Floor[r*(k + 1)] x^k, {k, 0, z}]; f[x]
CoefficientList[Series[1/f[x], {x, 0, 2*z}], x]
PROG
(PARI) r = exp(1)/2;
Vec(1/sum(k=0, 70, floor(r*(k + 1))*x^k) + O(x^71)) \\ Indranil Ghosh, Mar 30 2017
CROSSREFS
Cf. A279607.
Sequence in context: A263149 A008819 A374018 * A279675 A169646 A349125
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Dec 16 2016
STATUS
approved