login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277099
Number of partitions of n containing no part i of multiplicity i+1.
6
1, 1, 1, 3, 4, 6, 8, 12, 18, 24, 32, 45, 59, 79, 104, 137, 177, 229, 295, 377, 477, 605, 761, 956, 1193, 1484, 1840, 2276, 2800, 3441, 4210, 5141, 6261, 7603, 9206, 11132, 13419, 16144, 19380, 23223, 27763, 33134, 39467, 46931, 55703, 66008, 78085, 92239, 108776, 128091, 150617
OFFSET
0,4
LINKS
FORMULA
a(n) = A276433(n,0).
G.f.: g(x) = Product_{i>=1} (1/(1-x^i) - x^(i*(i+1))).
EXAMPLE
a(4) = 4 because we have [1,1,1,1], [1,3], [2,2], and [4]; the partition [1,1,2] does not qualify.
MAPLE
g:= product(1/(1-x^i)-x^(i*(i+1)), i = 1 .. 100): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(i+1=j, 0, b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, Sep 30 2016
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1/(1-x^k) - x^(k*(k+1))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 30 2016 *)
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Sep 30 2016
STATUS
approved