login
A276801
Decimal expansion of t^3, where t is the tribonacci constant A058265.
12
6, 2, 2, 2, 2, 6, 2, 5, 2, 3, 1, 2, 0, 3, 9, 8, 6, 2, 6, 6, 7, 4, 5, 6, 1, 1, 0, 1, 1, 0, 8, 3, 2, 1, 1, 8, 7, 3, 7, 3, 5, 6, 0, 7, 8, 9, 8, 4, 6, 1, 6, 8, 4, 2, 8, 7, 9, 8, 3, 2, 1, 3, 1, 6, 6, 3, 9, 5, 7, 5, 1, 1, 8, 0, 9, 1, 9, 0, 6, 7, 1, 7, 9, 6, 2, 0, 2, 8, 7, 5, 3, 4, 3, 2, 6, 7, 3, 1, 5, 3, 7, 4, 6, 0, 8, 0, 4
OFFSET
1,1
COMMENTS
A cubic integer with minimal polynomial x^3 - 7x^2 + 5x - 1, of which it is the unique real root. - Charles R Greathouse IV, Nov 06 2016
FORMULA
1/t + 1/t^2 + 1/t^3 = 1/A058265 + 1/A276800 + 1/A276801 = 1.
From Dimitri Papadopoulos, Nov 07 2023: (Start)
t^3 = (A276800^2 + 1)/2.
t^3 + 1/t^3 = t + 1/t + 4.
t^3 = (1/4)*(t + 1)^2*(t - 1)^2*(t^2 + 1). (End)
EXAMPLE
6.222262523120398626674561101108321187373560789846168428798321316639575...
MATHEMATICA
RealDigits[x /. FindRoot[x^3 - 7*x^2 + 5*x - 1, {x, 6}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, May 27 2023 *)
PROG
(PARI) polrootsreal(x^3-7*x^2+5*x-1)[1] \\ Charles R Greathouse IV, Nov 06 2016
CROSSREFS
Sequence in context: A136708 A020795 A136710 * A083286 A247818 A325039
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Oct 28 2016
STATUS
approved