login
A275962
Total number of nonzero digits that occur on the multiply occupied slopes of the factorial base representation of n: a(n) = A275812(A275734(n)). (See comments for more exact definition).
9
0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 2, 3, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 2, 3, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 4, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 2, 3, 0, 0, 2, 2, 0, 2, 0, 0, 2, 2, 0, 2, 2, 2, 3, 3, 2, 4, 0, 2, 2, 4, 2, 3, 0, 2, 0, 2, 2, 3, 0, 2, 0, 2, 2, 3, 0, 2, 2, 4, 2, 3, 2, 3, 2, 3, 3, 4, 0
OFFSET
0,6
COMMENTS
a(n) gives the total number of elements (counted with multiplicity) that have multiplicity > 1 in a multiset [(i_x - d_x) | where d_x ranges over each nonzero digit present and i_x is its position from the right].
FORMULA
a(n) = A275812(A275734(n)).
Other identities and observations. For all n >= 0.
a(n) = A275964(A225901(n)).
a(n) = A060130(n) - A275946(n).
a(n) >= A275947(n).
EXAMPLE
For n=525, in factorial base "41311", there are three occupied slopes. The maximal slope contains the nonzero digits "3.1", the sub-maximal the digits "4..1.", and the sub-sub-sub-maximal just "1..." (the 1 in the position 4 from right is the sole occupier of its own slope). There are two slopes with more than one nonzero digit, each having two such digits, and thus a(525) = 2+2 = 4.
Equally, when we form a multiset of (digit-position - digit-value) differences for all nonzero digits present in "41311", we obtain a multiset [0, 0, 1, 1, 3], in which the elements that occur multiple times are [0, 0, 1, 1], thus a(525) = 4.
PROG
(Scheme) (define (A275962 n) (A275812 (A275734 n)))
CROSSREFS
Cf. A275804 (indices of zeros), A275805 (of nonzeros).
Sequence in context: A045833 A117896 A356735 * A132976 A143840 A028649
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Aug 15 2016
STATUS
approved