login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275944
Gaussian binomial coefficient [n,3] for q = 10.
0
1, 1111, 1122211, 1123333211, 1123445443211, 1123456666543211, 1123457788877543211, 1123457901110987543211, 1123457912334332087543211, 1123457913456666543087543211, 1123457913568899988653087543211, 1123457913580123333209753087543211, 1123457913581245667665420753087543211
OFFSET
3,2
COMMENTS
More generally, the ordinary generation function for the Gaussian binomial coefficients [n,k]_q is x^k/Product_{m=0..k} (1 - q^m*x).
Convolution of A002275 and A147816 (considering offset: 0, 0, 1, 1100, 1110000, ...).
The first seven members are palindromes.
FORMULA
O.g.f.: x^3/((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).
E.g.f.: (-1000 + 1110*exp(9*x) - 111*exp(99*x) + exp(999*x))*exp(x)/890109000.
a(n) = 1111*a(n-1) - 112110*a(n-2) + 1111000*a(n-3) - 1000000*a(n-4).
a(n) = ((10^n - 100)*(10^n - 10)*(10^n - 1))/890109000.
a(n) = Product_{i=0..2} (1 - 10^(n-i))/(1 - 10^(i+1)).
MATHEMATICA
Table[((10^n - 100) (10^n - 10) (10^n - 1))/890109000, {n, 0, 15}]
Table[QBinomial[n, 3, 10], {n, 3, 15}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Aug 13 2016
STATUS
approved