login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015292
Gaussian binomial coefficient [ n,4 ] for q = -6.
2
1, 1111, 1480963, 1910490043, 2477905585771, 3210953026617931, 4161484248724884235, 5393264335151280477835, 6989674736616919292088715, 9058617560471271225871839115, 11739968552378570066280405695371
OFFSET
4,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1111, 246642, -8879112, -51834816, 60466176).
MATHEMATICA
Table[QBinomial[n, 4, -6], {n, 4, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
PROG
(Sage) [gaussian_binomial(n, 4, -6) for n in range(4, 15)] # Zerinvary Lajos, May 27 2009
(Magma) r:=4; q:=-6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 02 2016
CROSSREFS
Sequence in context: A225238 A275944 A291945 * A274831 A154805 A203897
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved