login
A275632
Andrews's 4-shadow function THETA.BAR_3(q).
2
1, 2, 4, 6, 10, 8, 16, 12, 20, 18, 24, 16, 38, 20, 32, 32, 42, 24, 52, 28, 56, 44, 48, 32, 80, 42, 56, 54, 76, 40, 96, 44, 84, 64, 72, 64, 122, 52, 80, 76, 120, 56, 128, 60, 112, 104, 96, 64, 166, 78, 124, 96, 132, 72, 160, 96
OFFSET
0,2
LINKS
George E. Andrews, 4-Shadows in q-Series and the Kimberling Index, Preprint, May 15, 2016
FORMULA
See Section 1 of Andrews (2016) or the Maple code below.
MAPLE
F:=(a, q, n)->mul(1-a*q^i, i=0..n-1); # This is (a; q)_n
M:=15;
THETA3:=(add((-1)^n*q^(3*n^2), n=-M..M)) /(add((-1)^n*q^(n^2), n=-M..M));
s1:=series(THETA3, q, 80); seriestolist(%);
THETABAR3:=1+2*add( (F(q, q, n-1)*q^(n^2)) / (F(q^n, q, n)*(1-q^n)), n=1..M);
s2:=series(THETABAR3, q, 80); seriestolist(%);
series((s1-s2)/8, q, 80); seriestolist(%);
CROSSREFS
Sequence in context: A073661 A079052 A243502 * A269360 A243501 A076246
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 09 2016
STATUS
approved