login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275485
Number of integer lattice points from an n X n square in R^2 centered at the origin that are closer (measured using the Euclidean metric) to the origin than to any of the four sides of the square.
2
1, 1, 1, 1, 9, 9, 9, 9, 21, 25, 25, 25, 37, 45, 49, 49, 69, 69, 77, 81, 101, 109, 117, 117, 141, 149, 157, 165, 189, 197, 205, 213, 241, 261, 269, 269, 305, 321, 333, 341, 377, 385, 401, 413, 449, 465, 481, 489, 529, 545
OFFSET
1,5
COMMENTS
There is a formula, but no closed form, for computing the entries of the sequence.
REFERENCES
N. R. Baeth, L. Luther and R. McKee, Variations on a Putnam Problem, preprint, 2016.
FORMULA
a(n) = (2*floor(n*(sqrt(2)-1)/2)+1)^2+4*Sum_{i=ceiling(-n*(sqrt(2)-1)/2)..floor(n*(sqrt(2)-1)/2)} ceiling(n/4-i^2/n)-1-floor(n*(sqrt(2)-1)/2).
MAPLE
A275485:=n->(2*floor(n*(sqrt(2)-1)/2)+1)^2+4*add(ceil(n/4-i^2/n)-1-floor(n*(sqrt(2)-1)/2), i=ceil(-n*(sqrt(2)-1)/2)..floor(n*(sqrt(2)-1)/2)): seq(A275485(n), n=1..100); # Wesley Ivan Hurt, Sep 27 2016
PROG
(PARI) a(n)=(2*floor(n*(sqrt(2)-1)/2)+1)^2+4*sum(i=ceil(-n*(sqrt(2)-1)/2), floor(n*(sqrt(2)-1)/2), ceil(n/4-i^2/n)-1-floor(n*(sqrt(2)-1)/2)); \\ Joerg Arndt, Sep 27 2016
CROSSREFS
Cf. A000328.
Sequence in context: A068395 A245429 A242893 * A346263 A344337 A293832
KEYWORD
nonn
AUTHOR
Nicholas Baeth, Sep 26 2016
STATUS
approved