OFFSET
0,1
FORMULA
a(n) = A056040(n)*(2+[n/2])/(1+[n/2]).
a(2*n+1) = (n+2)*binomial(2*n+1, n+1) = A189911(2*n+1).
a(2*n-3) = n*binomial(2*n-3, n-1) = A097070(n) for n>=2.
a(2*n+2) = (n+3)*binomial(2*n+2, n+1)/(n+2) = A038665(n).
Sum_{n>=0} 1/a(n) = 16/3 - 40*Pi/(9*sqrt(3)) + 4*Pi^2/9. - Amiram Eldar, Aug 20 2022
MAPLE
a := n -> (2+iquo(n, 2))*n!/((1+iquo(n, 2))*iquo(n, 2)!^2):
seq(a(n), n=0..34);
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 10 2016
STATUS
approved