login
A275165
Number of n-node graphs with two connected components.
10
1, 1, 2, 3, 9, 29, 142, 998, 12145, 273400, 11991377, 1018707920, 165078860715, 50500999728875, 29053989521340327, 31426435300576595334, 64000986599534312456052, 245935832697890955733422940, 1787577661113111145804012336114, 24637809007125076355873926288686728
OFFSET
0,3
COMMENTS
"Component" means there are no edges from a node of one component to any node of the other component.
Each of the 2 components may be the empty graph with 0 nodes. That means the graph has only one "visible" component in these cases.
Each of the 2 components must be a connected graph (see A001349). (The empty graph has all properties and is a connected graph.)
The graphs of the components may be the same (=isomorphic).
LINKS
FORMULA
G.f.: [A(x)^2 + A(x^2)]/2 where A(x) is the o.g.f. for A001349.
a(n) = A275166(n) if n odd.
EXAMPLE
a(4)=9 = 1*6 + 1*2 + 1*1 where 1*6=A001349(0)*A001349(4) counts graphs with an empty component and a component with 4 nodes, where 1*2 = A001349(1)*A001349(3) counts graphs with a component of 1 node and a component of 3 nodes, and where 1*1 = A001349(2)*A001349(2) counts graph with a component of 2 nodes and another component of 2 nodes (both components the same in that case).
MATHEMATICA
terms = 20;
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] +
Total[Quotient[v, 2]];
a88[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
A[x_] = Join[{1}, EULERi[Array[a88, terms]]].(x^Range[0, terms]);
CoefficientList[(A[x]^2 + A[x^2])/2 + O[x]^terms, x] (* Jean-François Alcover, May 28 2019, after Andrew Howroyd in A001349 *)
PROG
(Python)
from functools import lru_cache
from itertools import combinations
from fractions import Fraction
from math import prod, gcd, factorial, comb
from sympy import mobius, divisors
from sympy.utilities.iterables import partitions
def A275165(n):
@lru_cache(maxsize=None)
def b(n): return int(sum(Fraction(1<<sum(p[r]*p[s]*gcd(r, s) for r, s in combinations(p.keys(), 2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items()), prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
@lru_cache(maxsize=None)
def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1, n))
@lru_cache(maxsize=None)
def d(n): return sum(mobius(n//d)*c(d) for d in divisors(n, generator=True))//n if n else 1
return sum(d(i)*d(n-i) for i in range(n+1>>1)) + (0 if n&1 else comb(d(n>>1)+1, 2)) # Chai Wah Wu, Jul 03 2024
CROSSREFS
Cf. A216785, A001349, A275166, A274934 (no empty components).
Sequence in context: A153701 A176678 A277251 * A073950 A281270 A322752
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jul 18 2016
STATUS
approved