login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: 1 = ...((((A(x) - 2*x)^2 - 4*x^2)^2 - 8*x^3)^2 - 16*x^4)^2 -... - 2^n*x^n)^2 -...., a series of infinite nested squares.
1

%I #20 Jul 07 2017 03:26:32

%S 1,2,2,2,0,-2,-4,-2,-6,-2,4,50,78,34,-248,-146,248,1478,992,-2570,

%T -13918,-19026,-12744,68034,193088,380810,86880,-1362006,-5050422,

%U -6966190,1464256,39349110,99348446,130130462,-62116516,-664338662,-1811216390,-2530859462,-458383728,9647822334,29564081352,51363216966,35437251200,-72752696138,-343482383882,-735851485042,-1167503794928,-1270647820502,-634163168566,3532238523874,18635012627076

%N G.f. A(x) satisfies: 1 = ...((((A(x) - 2*x)^2 - 4*x^2)^2 - 8*x^3)^2 - 16*x^4)^2 -... - 2^n*x^n)^2 -...., a series of infinite nested squares.

%H Paul D. Hanna, <a href="/A274850/b274850.txt">Table of n, a(n) for n = 0..300</a>

%F G.f.: S(0) where S(k) = (2*x)^(k+1) + S(k+1)^(1/2). - _Michael Somos_, Jul 06 2017

%e G.f.: A(x) = 1 + 2*x + 2*x^2 + 2*x^3 - 2*x^5 - 4*x^6 - 2*x^7 - 6*x^8 - 2*x^9 + 4*x^10 + 50*x^11 + 78*x^12 + 34*x^13 - 248*x^14 - 146*x^15 + 248*x^16 +...

%e such that A(x) satisfies the series of infinite nested squares given by:

%e 1 = (((((((((A - 2*x)^2 - 2^2*x^2)^2 - 2^3*x^3)^2 - 2^4*x^4)^2 - 2^5*x^5)^2 - 2^6*x^6)^2 - 2^7*x^7)^2 - 2^8*x^8)^2 - 2^9*x^9)^2 ...

%e ILLUSTRATION.

%e Equivalently, we may start with B0 = A(x) - 2*x, and then continue

%e B1 = ( B0^2 - 2^2*x^2 )^(1/2)

%e B2 = ( B1^4 - 2^3*x^3 )^(1/4)

%e B3 = ( B2^8 - 2^4*x^4 )^(1/8)

%e B4 = ( B3^16 - 2^5*x^5 )^(1/16)

%e B5 = ( B4^32 - 2^6*x^6 )^(1/32)

%e B6 = ( B5^64 - 2^7*x^7 )^(1/64)

%e B7 = ( B6^128 - 2^8*x^8 )^(1/128)

%e B8 = ( B7^256 - 2^9*x^9 )^(1/256)

%e B9 = ( B8^512 - 2^10*x^10 )^(1/512)

%e ...

%e The above series converge to 1, as can be seen by:

%e B0 = 1 + 2*x^2 + 2*x^3 - 2*x^5 - 4*x^6 - 2*x^7 - 6*x^8 - 2*x^9 + 4*x^10 +...

%e B1 = 1 + 2*x^3 + 2*x^4 + 2*x^5 - 4*x^6 - 10*x^7 - 24*x^8 - 10*x^9 + 16*x^10 +...

%e B2 = 1 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 - 12*x^8 - 26*x^9 - 56*x^10 - 86*x^11 +...

%e B3 = 1 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + 2*x^9 - 28*x^10 - 58*x^11 - 120*x^12 +...

%e B4 = 1 + 2*x^6 + 2*x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 - 60*x^12 - 122*x^13 +...

%e B5 = 1 + 2*x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 2*x^12 + 2*x^13 - 124*x^14 +...

%e B6 = 1 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 2*x^12 + 2*x^13 + 2*x^14 + 2*x^15 - 252*x^16 - 506*x^17 - 1016*x^18 - 1526*x^19 - 2548*x^20 +...

%e B7 = 1 + 2*x^9 + 2*x^10 + 2*x^11 + 2*x^12 + 2*x^13 + 2*x^14 + 2*x^15 + 2*x^16 + 2*x^17 - 508*x^18 - 1018*x^19 - 2040*x^20 - 3062*x^21 +...

%e B8 = 1 + 2*x^10 + 2*x^11 + 2*x^12 + 2*x^13 + 2*x^14 + 2*x^15 + 2*x^16 + 2*x^17 + 2*x^18 + 2*x^19 - 1020*x^20 - 2042*x^21 - 4088*x^22 +...

%e B9 = 1 + 2*x^11 + 2*x^12 + 2*x^13 + 2*x^14 + 2*x^15 + 2*x^16 + 2*x^17 + 2*x^18 + 2*x^19 + 2*x^20 + 2*x^21 - 2044*x^22 - 4090*x^23 +...

%e ...

%t a[ n_] := If[ n < 0, 0, Module[{A = 1 + O[x]^(n + 1), B = (2 x)^(n + 1)}, Do[ A = Sqrt[A] + (B /= 2 x), n]; SeriesCoefficient[A, n]]]; (* _Michael Somos_, Jul 06 2017 *)

%o (PARI) {a(n) = my(A=[1],B=1,m); for(i=1,n, A=concat(A,0); B = Ser(A);

%o for(m=0,#A-1, B = (B^(2^m) - 2^(m+1)*x^(m+1))^(1/2^m); A[#A] = -Vec(B)[#A]) ); A[n+1]}

%o for(n=0,50,print1(a(n),", "))

%o (PARI) {a(n) = my(A); if( n<0, 0, A = 1 + x * O(x^n); for(k=1, n, A = sqrt(A) + (2*x)^(n+1-k)); polcoeff(A, n))}; /* _Michael Somos_, Jul 06 2017 */

%K sign

%O 0,2

%A _Paul D. Hanna_, Jul 09 2016