login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274850
G.f. A(x) satisfies: 1 = ...((((A(x) - 2*x)^2 - 4*x^2)^2 - 8*x^3)^2 - 16*x^4)^2 -... - 2^n*x^n)^2 -...., a series of infinite nested squares.
1
1, 2, 2, 2, 0, -2, -4, -2, -6, -2, 4, 50, 78, 34, -248, -146, 248, 1478, 992, -2570, -13918, -19026, -12744, 68034, 193088, 380810, 86880, -1362006, -5050422, -6966190, 1464256, 39349110, 99348446, 130130462, -62116516, -664338662, -1811216390, -2530859462, -458383728, 9647822334, 29564081352, 51363216966, 35437251200, -72752696138, -343482383882, -735851485042, -1167503794928, -1270647820502, -634163168566, 3532238523874, 18635012627076
OFFSET
0,2
LINKS
FORMULA
G.f.: S(0) where S(k) = (2*x)^(k+1) + S(k+1)^(1/2). - Michael Somos, Jul 06 2017
EXAMPLE
G.f.: A(x) = 1 + 2*x + 2*x^2 + 2*x^3 - 2*x^5 - 4*x^6 - 2*x^7 - 6*x^8 - 2*x^9 + 4*x^10 + 50*x^11 + 78*x^12 + 34*x^13 - 248*x^14 - 146*x^15 + 248*x^16 +...
such that A(x) satisfies the series of infinite nested squares given by:
1 = (((((((((A - 2*x)^2 - 2^2*x^2)^2 - 2^3*x^3)^2 - 2^4*x^4)^2 - 2^5*x^5)^2 - 2^6*x^6)^2 - 2^7*x^7)^2 - 2^8*x^8)^2 - 2^9*x^9)^2 ...
ILLUSTRATION.
Equivalently, we may start with B0 = A(x) - 2*x, and then continue
B1 = ( B0^2 - 2^2*x^2 )^(1/2)
B2 = ( B1^4 - 2^3*x^3 )^(1/4)
B3 = ( B2^8 - 2^4*x^4 )^(1/8)
B4 = ( B3^16 - 2^5*x^5 )^(1/16)
B5 = ( B4^32 - 2^6*x^6 )^(1/32)
B6 = ( B5^64 - 2^7*x^7 )^(1/64)
B7 = ( B6^128 - 2^8*x^8 )^(1/128)
B8 = ( B7^256 - 2^9*x^9 )^(1/256)
B9 = ( B8^512 - 2^10*x^10 )^(1/512)
...
The above series converge to 1, as can be seen by:
B0 = 1 + 2*x^2 + 2*x^3 - 2*x^5 - 4*x^6 - 2*x^7 - 6*x^8 - 2*x^9 + 4*x^10 +...
B1 = 1 + 2*x^3 + 2*x^4 + 2*x^5 - 4*x^6 - 10*x^7 - 24*x^8 - 10*x^9 + 16*x^10 +...
B2 = 1 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 - 12*x^8 - 26*x^9 - 56*x^10 - 86*x^11 +...
B3 = 1 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + 2*x^9 - 28*x^10 - 58*x^11 - 120*x^12 +...
B4 = 1 + 2*x^6 + 2*x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 - 60*x^12 - 122*x^13 +...
B5 = 1 + 2*x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 2*x^12 + 2*x^13 - 124*x^14 +...
B6 = 1 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 2*x^12 + 2*x^13 + 2*x^14 + 2*x^15 - 252*x^16 - 506*x^17 - 1016*x^18 - 1526*x^19 - 2548*x^20 +...
B7 = 1 + 2*x^9 + 2*x^10 + 2*x^11 + 2*x^12 + 2*x^13 + 2*x^14 + 2*x^15 + 2*x^16 + 2*x^17 - 508*x^18 - 1018*x^19 - 2040*x^20 - 3062*x^21 +...
B8 = 1 + 2*x^10 + 2*x^11 + 2*x^12 + 2*x^13 + 2*x^14 + 2*x^15 + 2*x^16 + 2*x^17 + 2*x^18 + 2*x^19 - 1020*x^20 - 2042*x^21 - 4088*x^22 +...
B9 = 1 + 2*x^11 + 2*x^12 + 2*x^13 + 2*x^14 + 2*x^15 + 2*x^16 + 2*x^17 + 2*x^18 + 2*x^19 + 2*x^20 + 2*x^21 - 2044*x^22 - 4090*x^23 +...
...
MATHEMATICA
a[ n_] := If[ n < 0, 0, Module[{A = 1 + O[x]^(n + 1), B = (2 x)^(n + 1)}, Do[ A = Sqrt[A] + (B /= 2 x), n]; SeriesCoefficient[A, n]]]; (* Michael Somos, Jul 06 2017 *)
PROG
(PARI) {a(n) = my(A=[1], B=1, m); for(i=1, n, A=concat(A, 0); B = Ser(A);
for(m=0, #A-1, B = (B^(2^m) - 2^(m+1)*x^(m+1))^(1/2^m); A[#A] = -Vec(B)[#A]) ); A[n+1]}
for(n=0, 50, print1(a(n), ", "))
(PARI) {a(n) = my(A); if( n<0, 0, A = 1 + x * O(x^n); for(k=1, n, A = sqrt(A) + (2*x)^(n+1-k)); polcoeff(A, n))}; /* Michael Somos, Jul 06 2017 */
CROSSREFS
Sequence in context: A130277 A109135 A264136 * A349437 A215594 A230291
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 09 2016
STATUS
approved