login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274572
Column 1 of triangle A274570.
5
1, 2, 20, 470, 19912, 1326382, 127677580, 16767030632, 2880746218304, 627213971899610, 168767535712912684, 54994347890521005100, 21342142821229037730064, 9726400286221416303901358, 5143644030714149522751534524, 3124088412968372614077895431788, 2159818183532141245447039295746240, 1686295004858842334963772859214802354, 1476540037893212558044217633785452773068, 1440964034588041764141738802548853847618732
OFFSET
0,2
COMMENTS
Triangle A274570 transforms diagonals in the array A274390 of coefficients of successive iterations of Euler's tree function (A000169).
LINKS
PROG
(PARI) {T(n, k)=local(F=x,
LW=serreverse(x*exp(-x+x*O(x^(n+2)))), M, N, P, m=max(n, k));
M=matrix(m+3, m+3, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, LW)); polcoeff(F, c));
N=matrix(m+1, m+1, r, c, M[r, c]);
P=matrix(m+1, m+1, r, c, M[r+1, c]);
(n-k)!*(P~*N~^-1)[n+1, k+1]}
/* Print triangle A274570: */
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
/* Print this sequence, which is column 1 */
for(n=0, 20, print1(T(n+1, 1), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 28 2016
STATUS
approved