login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274569
G.f. satisfies: A( x*A(x) ) = x^2 + x^3.
1
1, 1, -1, -2, 2, 9, 1, -29, -24, 88, 153, -234, -796, 327, 3509, 1301, -13924, -16511, 47366, 109639, -121886, -583921, 79027, 2691465, 1808431, -10775705, -16965876, 35686874, 107103382, -77820607, -560120299, -95094380, 2536045800, 2521002564, -9832805334, -19928899203, 29983217002, 118838292930, -44109504096, -600237397739, -285632368107, 2622720919077, 3530864633371, -9611558966277, -24857829812388, 25472208656701, 140445352832736, -5891793579597, -680872708032455, -537359624615144, 2838471301330439, 4957200244969051, -9600812793387365
OFFSET
1,4
LINKS
EXAMPLE
G.f.: A(x) = x + x^2 - x^3 - 2*x^4 + 2*x^5 + 9*x^6 + x^7 - 29*x^8 - 24*x^9 + 88*x^10 + 153*x^11 - 234*x^12 - 796*x^13 + 327*x^14 + 3509*x^15 + 1301*x^16 +...
such that A( x*A(x) ) = x^2 + x^3.
MAPLE
N:= 50: # to get a(1) to a(N)
a[1]:= 1:
eq:= eval(A(x*A(x)) - x^2 - x^3, A = unapply(add(a[i]*x^i, i=1..N), x)):
S:= map(normal, series(eq, x, N+2)):
for n from 2 to N+1 do
a[n]:= solve(coeff(S, x, n+1))
od:
seq(a[i], i=1..50); # Robert Israel, Jul 26 2016
MATHEMATICA
nmax = 53; sol = {a[1] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 1, n}] /. sol; eq = CoefficientList[A[x A[x]] - (x^2 + x^3) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax+1}];
sol /. Rule -> Set;
a /@ Range[1, nmax] (* Jean-François Alcover, Nov 01 2019 *)
PROG
(PARI) {a(n) = my(A=[1, 1], F); for(i=1, n, A=concat(A, 0); F=x*Ser(A); F = subst(F, x, x*F); A[#A] = -Vec(F)[#A]); A[n]}
for(n=1, 60, print1(a(n), ", "))
CROSSREFS
Sequence in context: A048650 A125313 A199058 * A082838 A074961 A359454
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 18 2016
STATUS
approved