login
A273768
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 913", based on the 5-celled von Neumann neighborhood.
1
1, 5, 22, 70, 151, 272, 441, 666, 955, 1316, 1757, 2286, 2911, 3640, 4481, 5442, 6531, 7756, 9125, 10646, 12327, 14176, 16201, 18410, 20811, 23412, 26221, 29246, 32495, 35976, 39697, 43666, 47891, 52380, 57141, 62182, 67511, 73136, 79065, 85306, 91867, 98756
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, May 29 2016: (Start)
a(n) = (4*n^3+12*n^2+11*n-39)/3 for n>2.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>6.
G.f.: (1+x+8*x^2+8*x^3-16*x^4+5*x^5+x^6) / (1-x)^4.
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=913; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A273766.
Sequence in context: A222632 A366081 A273336 * A032168 A246211 A000345
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 29 2016
STATUS
approved