login
A273336
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 657", based on the 5-celled von Neumann neighborhood.
1
1, 5, 22, 70, 150, 270, 438, 662, 950, 1310, 1750, 2278, 2902, 3630, 4470, 5430, 6518, 7742, 9110, 10630, 12310, 14158, 16182, 18390, 20790, 23390, 26198, 29222, 32470, 35950, 39670, 43638, 47862, 52350, 57110, 62150, 67478, 73102, 79030, 85270, 91830, 98718
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, May 20 2016: (Start)
a(n) = 2/3*(2*n^3+6*n^2+4*n-15) for n>1.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>5.
G.f.: (1+x+8*x^2+8*x^3-17*x^4+7*x^5) / (1-x)^4.
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=657; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A273334.
Sequence in context: A286711 A222632 A366081 * A273768 A032168 A246211
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 20 2016
STATUS
approved