login
A273156
Product of all parts in Zeckendorf representation of n.
4
0, 1, 2, 3, 3, 5, 5, 10, 8, 8, 16, 24, 24, 13, 13, 26, 39, 39, 65, 65, 130, 21, 21, 42, 63, 63, 105, 105, 210, 168, 168, 336, 504, 504, 34, 34, 68, 102, 102, 170, 170, 340, 272, 272, 544, 816, 816, 442, 442, 884, 1326, 1326, 2210, 2210, 4420, 55, 55, 110, 165
OFFSET
0,3
LINKS
StackExchange user "orlp", Fibonacci products.
EXAMPLE
a(33) = 21*8*3*1 because 33 = 21+8+3+1.
MAPLE
A273156 := proc(n)
local nred, a, f ;
if n = 0 then
0;
else
nred := n ;
a := 1 ;
while nred > 1 do
f := A087172(nred) ;
a := a*f ;
nred := nred-f ;
end do:
a ;
end if;
end proc: # R. J. Mathar, May 17 2016
MATHEMATICA
t = Fibonacci /@ Range@ 21; {0}~Join~Table[Times @@ If[MemberQ[t, n], {n}, Most@ MapAt[# + 1 &, Abs@ Differences@ FixedPointList[# - First@ Reverse@ TakeWhile[t, Function[k, # >= k]] &, n], -1]], {n, 58}] (* Michael De Vlieger, May 17 2016 *)
a[0]=0; a[n_]:=Block[{m=n, p=1, f, k=0}, While[Fibonacci@ ++k <= n]; While[ m>1, f= Fibonacci@ --k; If[ f<=m, m-=f; p*=f]]; p]; Array[a, 80, 0] (* Giovanni Resta, May 17 2016 *)
PROG
(Haskell)
a273156 = product . a035516_row
CROSSREFS
Sequence in context: A134408 A051032 A106530 * A294487 A212792 A281363
KEYWORD
nonn,look
AUTHOR
Peter Kagey, May 16 2016
STATUS
approved