login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270441
Numbers n such that n^3+1 divides n!.
4
17, 31, 50, 68, 69, 75, 80, 101, 103, 122, 147, 155, 159, 160, 164, 170, 173, 179, 182, 212, 230, 231, 236, 257, 263, 264, 274, 278, 293, 302, 325, 327, 335, 353, 362, 373, 374, 381, 394, 407, 411, 424, 431, 437, 440, 451, 459, 467, 471, 472, 485, 491, 495, 500
OFFSET
1,1
COMMENTS
There exist infinitely many natural numbers n such that n^3+1 divides n!, because for k > 0, (3*k+1)^2 + 1 and 16*k^4 + 1 are terms. (Edited by Jinyuan Wang, Feb 05 2019)
There are 1738 members up to 10^4, 19912 up to 10^5, 216921 up to 10^6, 2299173 up to 10^7, and 23960698 up to 10^8. Perhaps the asymptotic density is 1 - log 2 = 30.68...%. - Charles R Greathouse IV, Apr 05 2016 (Edited by Jinyuan Wang, Feb 06 2019)
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1) = 17 because 17 is the least natural number n such that n^3+1 | n!.
MAPLE
A270441:=n->`if`(n! mod (n^3+1) = 0, n, NULL): seq(A270441(n), n=1..800); # Wesley Ivan Hurt, Apr 02 2016
MATHEMATICA
For[n = 1, n <= 500, n++, If[Mod[n!, n^3 + 1] == 0, Print[n]]]
Select[Range@ 500, Divisible[#!, #^3 + 1] &] (* Michael De Vlieger, Mar 17 2016 *)
PROG
(PARI) isok(n) = (n! % (n^3+1)) == 0; \\ Michel Marcus, Mar 17 2016
(PARI) my(f=1); for(n=2, 10^3, f*=n; if(f%(n^3+1)==0, print1(n, ", "))); \\ Joerg Arndt, Apr 03 2016
(PARI) valp(n, p)=my(s); while(n>=p, s += n\=p); s
is(n)=if(isprime(n+1), return(0)); my(f=factor(n^2-n+1)); for(i=1, #f~, if(valp(n, f[i, 1])<f[i, 2], return(0))); 1 \\ Charles R Greathouse IV, Apr 04 2016
(Python)
from math import factorial
for n in range(2, 1000):
if(factorial(n)%(n**3+1)==0):print(n)
# Soumil Mandal, Apr 03 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
José Hernández, Mar 17 2016
STATUS
approved