OFFSET
1,1
COMMENTS
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
EXAMPLE
75 = 3*5*5 is included as there are more prime factors of the form 4k+1 (here two 5's) than of the form 4k+3 (here just one 3).
MATHEMATICA
Rest@ Position[Array[Map[Length, {Select[#, Mod[#, 4] == 1 &], Select[#, Mod[#, 4] == 3 &]}] &@ Flatten@ Apply[Table[#1, {#2}] &, FactorInteger@ #, 1] &, {221}], {a_, b_} /; a > b] // Flatten (* Michael De Vlieger, Feb 05 2016 *)
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(PARI) isok(n) = {my(f = factor(n), nb1 = 0, nb3 = 0); for (i=1, #f~, m = f[i, 1] % 4; if (m == 1, nb1 += f[i, 2], if (m == 3, nb3 += f[i, 2])); ); return (nb1 > nb3); } \\ Michel Marcus, Feb 04 2016
(Python)
from itertools import count, islice
from sympy import factorint
def A268379_gen(): # generator of terms
return filter(lambda n:sum((f:=factorint(n)).values())-f.get(2, 0) < 2*sum(f[p] for p in f if p & 3 == 1), count(1))
CROSSREFS
Subsequence of A268381.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 03 2016
STATUS
approved