login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267981
a(n) = Catalan(n)^2*(4n + 2).
1
2, 6, 40, 350, 3528, 38808, 453024, 5521230, 69526600, 898283672, 11848435872, 158966514616, 2163449607200, 29802622140000, 414852500188800, 5827381213589550, 82510878636707400, 1176544010190087000, 16882265852589060000, 243611096252860135800
OFFSET
0,1
COMMENTS
Numerator of (4n+2)*(Wallis-Lambert-series-1)(n) with denominator A013709(n) convergent to 2*(1-2/Pi). Proof: Both the Wallis-Lambert-series-1=4/Pi-1 and the elliptic Euler-series=1-2/Pi are absolutely convergent series. Thus any linear combination of the terms of these series will be also absolutely convergent to the value of the linear combination of these series - in this case to 2*(1-2/Pi). Q.E.D.
FORMULA
G.f.: (Pi-2*EllipticE(16*x))/(2*Pi*x). - Benedict W. J. Irwin, Jul 14 2016
a(n) ~ 4^(2*n+1)/(Pi*n^2). - Ilya Gutkovskiy, Jul 14 2016
Recurrence: (n+1)^2*a(n) = 4*(2*n - 1)*(2*n + 1)*a(n-1). - Vaclav Kotesovec, Jul 16 2016
Sum_{n>=0} a(n)/2^(4*n+2) = 2 - 4/Pi. - Vaclav Kotesovec, Jul 16 2016
EXAMPLE
For n=3 the a(3)=350.
MATHEMATICA
Table[CatalanNumber[n]^2 (4 n + 2), {n, 0, 20}] (* Vincenzo Librandi, Jan 25 2016 *)
PROG
(Magma) [Catalan(n)^2*(4*n+2):n in [0..20]]; // Vincenzo Librandi, Jan 25 2016
(PARI) a000108(n) = binomial(2*n, n)/(n+1)
a(n) = a000108(n)^2 * (4*n+2) \\ Felix Fröhlich, Jul 14 2016
CROSSREFS
Cf. A013709 (denominator). Equals twice A000891.
Sequence in context: A120592 A277476 A277483 * A343846 A318006 A356513
KEYWORD
nonn,frac
AUTHOR
Ralf Steiner, Jan 23 2016
EXTENSIONS
More terms from Vincenzo Librandi, Jan 25 2016
STATUS
approved