login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120592
G.f. satisfies: 5*A(x) = 4 + 4*x + A(x)^3, starting with [1,2,6].
5
1, 2, 6, 40, 330, 3048, 30156, 312528, 3349170, 36809960, 412651668, 4700098416, 54237852708, 632762593680, 7450815536280, 88435205367456, 1056940049423682, 12708927083800296, 153636691533864900, 1866178021496170800
OFFSET
0,2
COMMENTS
See comments in A120588 for conditions needed for an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n.
LINKS
FORMULA
G.f.: A(x) = 1 + Series_Reversion((1+5*x - (1+x)^3)/4).
G.f.: A(x) = Sum_{n>=0} C(3*n,n)/(2*n+1) * (4+4*x)^(2*n+1) / 5^(3*n+1), due to Lagrange Inversion.
Recurrence: 17*(n-1)*n*a(n) = 108*(n-1)*(2*n-3)*a(n-1) + 12*(3*n-7)*(3*n-5)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ sqrt(250-60*sqrt(15))*((108+30*sqrt(15))/17)^n/(30*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012
EXAMPLE
A(x) = 1 + 2*x + 6*x^2 + 40*x^3 + 330*x^4 + 3048*x^5 + 30156*x^6 +...
A(x)^3 = 1 + 6*x + 30*x^2 + 200*x^3 + 1650*x^4 +15240*x^5 +150780*x^6 +...
MATHEMATICA
FullSimplify[Table[SeriesCoefficient[Sum[Binomial[3*k, k]/(2*k+1)*(4+4*x)^(2*k+1)/5^(3*k+1), {k, 0, Infinity}], {x, 0, n}], {n, 0, 20}]] (* Vaclav Kotesovec, Oct 19 2012 *)
PROG
(PARI) {a(n)=local(A=1+2*x+6*x^2+x*O(x^n)); for(i=0, n, A=A+(-5*A+4+4*x+A^3)/2); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 16 2006, Jan 24 2008
STATUS
approved